الرياضيات المتناهية الأمثلة

حوّل إلى مجموعة رقمية x^2+2x>0
خطوة 1
أوجِد حل .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
حوّل المتباينة إلى معادلة.
خطوة 1.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
أخرِج العامل من .
خطوة 1.2.3
أخرِج العامل من .
خطوة 1.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.5.2
اطرح من كلا المتعادلين.
خطوة 1.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 1.7
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 1.8
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
انقر لعرض المزيد من الخطوات...
خطوة 1.8.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 1.8.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 1.8.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 1.8.1.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 1.8.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 1.8.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 1.8.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 1.8.2.3
الطرف الأيسر ليس أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطوة 1.8.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 1.8.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 1.8.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 1.8.3.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 1.8.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
خطأ
صحيحة
صحيحة
خطأ
صحيحة
خطوة 1.9
يتكون الحل من جميع الفترات الصحيحة.
أو
أو
خطوة 2
استخدِم المتباينة لإنشاء ترميز المجموعة.
خطوة 3